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Abstract

Receiver Operating Characteristic (ROC) curves are used to compare the ef-
fectiveness of IR image processing techniques. T'wo non-parametric error estimation
techniques (k-Nearest Neighbor and Parzen Window) are used to create estimates
of the probability density functions for the data. These pdfs are used in the cre-
ation of the ROC curves for both resubstitution and leave-one-out estimates. These
estimates generate the upper and lower bounds, respectively, on the ROC curves.
The ROC curve analysis is performed on the outputs of various image processing
techniques and the resulting ROC curves are used to compare the techniques. Of
the image processing techniques used in this thesis, the close minus open (CMO)

morphological filter operation produced the best results.

xii




ROC Analysis of IR Segmentation Techniques

L. Introduction
1.1 Background

Image processing, segmentation, and target recognition are important areas of
research to the Air Force. The object of image processing, segmentation, and target
recognition is to automatically identify regions of the image that contain targets,
without requiring human intervention. This will allow the pilot of an aircraft to
concentrate on other things such as maneuvering through enemy fire. Automatic
segmentation will also identify targets that may be difficult for the pilot to see
because they are either too far away or camoflauged. Typical infrared images are

shown in Figures 1.1 and 1.2.

There are many image processing techniques available, such as spatial feature
extraction, morphological filters, and hit-miss transforms, but none is perfect in
every situation. These techniques are based upon pfobabilities and statistics and,
therefore, have errors associated with them. Because there are errors, a method for
comparing the efficiency of each technique must be found. One way to do this is

through Receiver Operating Characteristic (ROC) curves.

ROC analysis was based on statistical decision theory and developed in signal
detection theory [13, 19]. In the past, the performance of classification systems was
measured by the percentage of correct decisions, but that “percent correct” does not
account for the false-positive and false-negative errors involved [13]. For example,
if 5% of people have a particular disease, then a system can be 95% accurate by
calling everyone negative. The problem with this number is that it does not take into

account that the system fails to find any positives. ROC analysis solves this problem
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Figure 1.2 Typical Infrared Image (range=4100 ft).
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by plotting true positive fractions (TPF) against false positive fractions (FPF) [13].

In the area of target recognition and in this thesis, these are the probabilities of hit

and false alarm, respectively.

In order to create the ROC curves from finite sample sets, the probability den-
sity functions need to be estimated. Two common non-parametric density estimation
techniques are the k-Nearest Neighbor estimation proposed by Fix and Hodges, and
the Parzen Window approach proposed by Parzen [6, 15]. These non-parametric
techniques for estimating the pdfs are used because they do not assume a functional

form for the pdf.

Resubstitution and leave-one-out methods are used to create the upper and
lower bounds, respectively, on the ROC curves. The resubstitution method involves
using all available samples to train the classifier, and then testing with those same
samples. Lachenbruch proposed the leave-one-out method which involves using all
but one sample to train the classifier, testing with that one sample, and repeating
the process for all data samples [10]. Fukunaga and Hummels showed that the
resubstitution and leave-one-out techniques can be applied to k-NN and Parzen
classifiers to obtain upper and lower bounds on the Bayes error rate [7]. Their
technique is used in this research to find the density estimations from which the

ROC curves are created.

1.2 Problem Statement

This thesis focuses on estimating the ROC curves using various segmentation
techniques to segment infrared images, and then processing the segmented images

to classify the pixels into two classes.

1.3 Scope

Actual infrared imagery taken by aircraft flying over targets in a desert back-

ground is used in producing the ROC curves. This imagery was obtained from
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the Wright Laboratories Automatic Target Recognition Branch at Wright-Patterson
AFB. A completely different set of imagery was obtained for the University of Cincin-
nati. This imagery contained x-ray images of breast cancer tumors, both malignant
and benign. Although the ROC curves generated in this thesis apply specifically to
the images used, the software can be used to obtain ROC curves for a variety of
targets in various backgrounds. This thesis concentrates on using only k-NN and
Parzen Window techniques to produce probability estimates for a two-class problem:

target and non-target.

1.4 Approach

The approach taken consists of first implementing current image processing
techniques: morphology and spatial feature extraction. Then Parzen Window and
k-Nearest Neighbor techniques, described by Fukunaga and Hummels and validated
by Martin, are used to estimate probability density functions from the images [7, 11].

From the probabilities obtained, ROC curves are constructed.

1.5 Research Objectives

The research objectives for this thesis are as follows:

1. Implement image processing techniques: morphology and spatial feature ex-

traction [3, 8].

2. Implement Parzen and k-NN error estimation approaches to construct ROC

curves for each processing technique [7, 11, 12].
3. Show that the ROC curve analysis is consistent from one image to the next.

4. Develop an understanding of how each image processing and error estimation

technique works, as well as how to interpret the results.
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1.6 Thesis Organization

The rest of this thesis is organized as follows: Chapter II contains the theory
behind the probability and error estimations, and each image processing technique.
Chapter III discusses the methods used to implement the processing techniques and

error estimations. Chapter IV presents the results obtained from applying each

technique. Finally, Chapter V gives an overall summary of this research.

1.7 Summary

Image segmentation and target recognition are ongoing areas of research. This
thesis investigates image processing techniques as well as a method for measuring

their performances in segmentation applications.
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II. Theory

This chapter describes the theory behind the methods used in this thesis. The

following topics are discussed:

Probability theory

Non-parametric density estimation

Receiver Operator Characteristic curves

Morphology.

2.1 Probability Theory

Probability theory is a mathematical method used to describe random phe-
nomena which are not deterministic, but can be approximately described by the
relative frequency of the occurence of the possible outcomes [18]. A simple example
of this is the tossing of a fair coin. Although the outcome on aﬁy given toss cannot

be predicted, it is likely that after many tosses, approximately half of the outcomes
will be heads and the other half tails.

The probability density function (pdf) is a representation of the distribution
of the outcomes of a random experiment. It shows the probability for observing any
outcome on a given trial of the experiment. The pdf of a single real variable has the
following properties:

f(z) >0 forall z (2.1)

/OO fz)dz = 1. (2.2)

—00

" The pdf for the coin toss mentioned above can be seen in Figure 2.1. Another
example, this time a continuous pdf, can be seen in Figure 2.2. In this case, the

probability of the outcome of the experiment falling between points a and b is the
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shaded area described by

/ ' f(o)da. (2.3)

p(x)

Nl

head tail X

[=]

Figure 2.1 The probability density function for the coin toss.

f(x)

X

Figure 2.2 A continuous probability density function.

Once pdfs have been estimated, error probabilities can be found. When two
conditional pdfs are plotted on the same axis as in Figure 2.3, a decision threshold
(t) can be placed at any point on the axis and a decision rule can be declared. The

decision rule used here is the Bayes decision rule where

P(s1]z) Zil P(ss|z) (2.4)

2
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" p(zls)Plsr) 3 plalsn)Plsa)
p(z) 5 p(z)

(2.5)

[16]. For example, given the pdfs in Figure 2.3, the decision rule would be to choose
Sy if the outcome falls to the left of the decision threshold and S, if it falls to the
right. In following this decision rule, the probability of error for S; (an S; point
that is declared S3) would be the area under the S; pdf that lies to the right of the
threshold. Similarly, the probability of error for S; would be the area under the S,
pdf that lies to the left of the threshold.

f(x)

p(xIspP(s) t

p(xls,)P(sy)

perrlsy) p(errls,) X

Figure 2.3 Example pdfs showing error probabilities.

2.2  Non-Parametric Density FEstimation

Non-parametric density estimation is a way of estimating the pdf of a random
variable given a finite number of samples without assuming a functional form. In this
section, the two estimation techniques used in this thesis will be described: k-nearest

neighbor and Parzen window.

2.2.1 k-Nearest Neighbor. The k-nearest neighbor (k-NN) technique for

estimating pdfs is based on the volume created by enclosing the k nearest samples to
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a data point by a contour of constant distance. If this volume is small, that means
the points are closely spaced and the probability of an outcome falling in that region
is high. Therefore, the pdf is large at that point. Conversely, if the volume is large,
the points are spread out and there is a lower probability of an outcome falling in
that region. Therefore, the pdf is small at that point. An example of this can be seen
in Figure 2.4. (In actuality, the contour enclosing points along a one-dimensional

line is only a length, but for illustration purposes a circle is used.)

Data Points
and
example contours for k=4

Estimated pdf

f(x)

Figure 2.4 k-NN density estimation. This estimation for k=4 illustrates how the
contours enclose the 4 nearest points to each chosen point.

The k-NN density estimation for class s; at point x is

k-1

- e (2.6)

pi()
where N; is the total number of samples, k is the number of neighbors, and Vk(i)(w)
1s the volume inside the surface of constant distance which encloses those k nearest

neighbors [7, 11].
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To calculate the volume inside the surface of constant distance, a distance
metric must be chosen. The one used in this thesis is the squared Mahalanobis

distanée described by

d(e,y)=(e—y)" X" (e~ ) (2.7)

where 3~ ~! is the inverse covariance matrix [11]. In n-dimensional space, a surface

of constant distance is a hyper-ellipsoid having a volume

1/2
Va3 ran(e) (2.8)
where
riv(z) = /(2,28 yn) (2.9)
anl?
n even

Va= 2242(23—1)/%2;_12! 1 odd (2-10)

n!

[4, 11]. Substituting into Equation 2.6, the k-NN estimate of the class s; pdf at point

x is
k-1
pi(z) = : (2.11)
NVa S [ (e, 2l o))
[11].
2.2.2 Parzen Window. In simple terms, the Parzen window technique

for estimating pdfs is obtained by placing a small window function at every data
point. When the areas of all the window functions are added together, the resulting
function will approximately estimate the density function. A simple example is

shown in Figure 2.5.
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Parzen Window Function

VAN

Data Points

‘Windows put at each Data Point

VAYS 770NN QVAVAN

X

Estimated pdf

£(x)

Figure 2.5 Parzen window density estimation.

Mathematically, the Parzen estimate of the conditional pdf at point x for class

s; containing data in n-dimensional space is
N; 1 (z)
z a5 2.]_2

where k(-) is a kernel (or window) function, % is a parameter that controls the spread

of the window, N; is the number of samples, and z; are the samples [7, 11].

The window used in this thesis is a Gaussian with the following functional

form:

s a5 (e — )T Y (2 - )] (2.13)

7= G

where p is a mean vector and )_ is a covariance matrix [4, 11]. The equation for the

window kernel is

_ @ NI -1 g
k; 5 )= : iz ; XP _(33 ) Z:12 Shab) (2.14)
h @m)2 [ R 2h




where the h? varies the spread of the window [11]. Substituting into Equation 2.12,

the Parzen density estimate with the Gaussian window function is

182 1 &(z,z)
— o exp |- N, @)
Ny = b | @)z | 2h

2.8  Receiver Operating Characteristic Curves

M

For an in depth description of ROC curves, see the works by Egan or Metz
[5, 13]. In simple terms for this thesis, a ROC curve is the probability of a hit plotted
versus the probability of false alarm. Given two overlapping pdfs, each point in the
shared region will have both a probability of a hit and false alarm as demonstrated
in Figure 2.6. For each point, the pair of probabilities are plotted together as in
Figure 2.7 to obtain the ROC curve. Creating these curves for each image processing
technique provides a means to measure the accuracy of each technique and make

comparisons between different techniques.

f(x)
pxls)P(s;)

p(xls)P(s,)

<. Pnit

Figure 2.6 Probability of hit and false alarm for S; given two overlapping condi-
tional pdfs.
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fa

Figure 2.7 An example ROC curve. Shows the resulting ROC curve of the pdfs in
Figure 2.6.

2.4 Morphology

Mathematical morphology is an image processing tool used to extract image
components that are used to describe shapes in the image [8]. Set theory is used
to describe mathematical morphology, and sets are used to represent the shapes
of objects in the image. The following sections describe set theory and the basic

functions of morphology.

2.4.1 Basic Definitions of Set Theory. In order to understand morphology,

one needs to know some basic definitions dealing with set theory.

First of all, a set is a collection of objects called elements [14]. For this thesis,

these elements are pixels in an image, so a set is a collection of pixels.

A subset is another set whose elements are also elements of a larger set [14].

This is denoted by Y C Z if Y is a subset of Z.

The union of two sets is a new set whose elements are all the elements of the
original two sets. For example, if set Y = {1,2,3,4,5} and set Z = {2,4,6,8} then
the union is Y U Z = {1,2,3,4,5,6,8}.

The intersection of two sets is a new set consisting of all elements that are com-

mon to both sets. Using sets Y and Z from above, the intersectionis Y N Z = {2, 4}.
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The following definitions were taken from the work by Gonzalez and Woods

[8]. The complement of set A consists of all elements not in A and is defined as

A°={z|z ¢ A}. (2.16)

An example is shown in Figure 2.8.

The translation (shift) of set B by z = (z1, ;) is defined as

(B); = {clc=b+z, for b€ B}. (2.17)

The reflection of B is defined as

A

B = {z|z = —b, for b € B}. (2.18)

I

The difference of the two sets A and B is defined as

A—B={zlzc A z¢ B} =AnB° (2.19)

and is also shown in Figure 2.8.

Figure 2.8 Venn diagrams showing the complement and difference.

For the morphology examples that follow, A is the image and B is the struc-
turing element (kernel). For binary morphology, A and B are sets in the 2-D integer

space with components a = (a1,a2) and b = (b, by).

2-9




Image A Structuring Element B

Dilation Erosion
Closing Opening

B~ B

Figure 2.9 Example of binary morphology. (photo-negative: black=1, white=0)
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2.4.2 Dilation. Dilation is a process that expands the image A by the
structuring element B. The process consists of reflecting B and then finding the set
of all shifts = where A and B overlap by at least one nonzero element. This dilation

process is defined by the following equations:
A® B={z|(B):,nA+0) (2.20)

A® B = {z|[(B), N A] C A} (2.21)

[8]. An example of a dilation can be seen in Figure 2.9.

2.4.3 FErosion.  The erosion of an image is a process that shrinks image A
by the structuring element B. The process consists of finding the set of all points x

where B shifted by z is contained in set A. This process is defined by
A6 B={z|(B), C A} (2.22)
[8]. A binary erosion can be seen in Figure 2.9.

2.4.4 Opening. Opening is a combination of an erosion followed by a
dilation. The opening process generally smoothes the contour and eliminates thin

lines. A opened by B is described by
AoB=(A6B)® B (2.23)

[8]. An example is shown in Figure 2.9. This image illustrates how thin lines in the
image are removed. The thin lines in the lower right corner and the small square in

the upper right corner of the original image have been removed.

2.4.5 Closing. Closing is also a combination process. It consists of a

dilation followed by an erosion. The closing process tends to smooth the contour,
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fuse narrow breaks, and eliminate small holes in the image. A closed by B is described
by
AeB=(A®B)oB (2.24)

[8]. An example is shown in Figure 2.9. This shows how the closing process can be

used to eliminate small holes in the image that could be due to noise. Notice that the
small white square that was near the center of the original image has been removed,
but the larger square holes remained intact. This process is useful for removing small

(smaller or equal to the size of the structuring element) bits of noise from images.

2.4.6 Gray-Scale. Until now, this section has dealt with binary images,
but there are also equations governing the morphological processing of gray-scale
images. The functions are similar to binary morphological functions, only another

dimension has been added. Gray-scale dilation is described by

(A® B)(s, ) = max{A(s—,t —y)+ B(z,y)|(s — ), (t—y) € 4;(z,5) € B} (2.25)

and gray-scale erosion is described by

(Ae B)(s,t) = min{A(s + z,t +y) — B(z,y)|(s +2), (t+y) € 4;(z,y) € B} (2.26)

[8].

Gray-scale dilation consists of shifting the structuring element to all positions
in the image where at least one pixel overlaps, as shown in Figure 2.10. For each shift,
the overlapping regions of the structuring element are added to the image and the
maximum pixel value in that new region becomes the pixel value for the new dilated
image. Gray-scale erosion is similar. It consists of shifting the structuring element to
all positions in the image where the structuring element is entirely contained in the
image as shown in Figure 2.10. For each shift, the structuring element is subtracted

from the image and the minimum pixel value becomes the new eroded pixel value.
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dilation erosion
At each shift, the two overlapping regions At each shift, the two overlapping regions
are added together and the maximum are subtracted and the minimum value is
value is put at point P in a new image. put at point P in a new image.

Figure 2.10 Gray-scale dilation and erosion.

Just as in binary morphological operations, the gray-scale opening of an image
is formed by performing an erosion followed by a dilation of the eroded image.
Similarly, the gray-scale closing is formed by performing a dilation followed by an
erosion. These basic gray-scale morphological functions ultimately lez;Jd to the CMO
(close minus open) algorithm. This CMO algorithm is used for clutter reduction in
IR images by removing large area background regions and converting all objects in
the scene to hot [1]. Aﬁ example showing and describing each stage in the gray-scale

CMO process can be seen in Chapter III.

2.5 Conclusion

This chapter described the basic theory behind the methods used in this re-
search to process images and measure the classification errors incurred. The next
chapter describes how this theory is implemented using both Khoros and Matlab

software.

2-13




III. Methodology

Some of the image processing was done in Khoros, so a quick tutorial on
Khoros is included in Appendix A. The rest of the code used in this research is
included in Appendices B, C, and D. This chapter will describe the methods used to
retrieve the images from the 8mm tapes, prepare them for processing, extract spatial
features, perform the morphological transform, and find the errors incurred through

classification.

3.1 Preparing the Images

The images were received on 8mm tape in ARF format from Wright Labora-
tories Automatic Target Recognition Branch. Along with the images came the code
needed to transform the data from ARF to the VIFF format used in Khoros. This
transformation is achieved by creating an arf2viff glyph in the Cantata workspace.
This is done by selecting from the Cantata menu workspace/file utilities/UIS
filename/arf2viff.pane. Now the images can be viewed, processed in Khoros, or

saved into matrix files to be imported into Matlab.

3.2 Khoros Spatial Bands

The Khoros image processing environment has a built-in function to extract
spatial features from images. These features are the mean, variance, contrast, an-
gular 2" moment, entropy, and dispersion. The following equations that describe
how each spatial feature is calculated were obtained from the Khoros manual by
Donohoe [3]. The algorithm assumes there are K gray levels in the image. In this
case, K = 255 and p(k) = the probability of occurrence of each gray level k, where
k=0,..,255.

K
mean, y = E[k] = kz_: kp(k) (3.1)




variance = E[k?] — E[k]> = kz_: kK p(k) — LZ—: kp(k)] (3.2)

K
contrast = Y  k? p(k) (3.3)

k=0

K
angular 2°¢ moment = p?(k) (3.4)
entropy = — kZ_:P(k) log, p(k) (3.5)
K

dispersion = 2_: |k — u| p(k) (3.6)

For each feature band, the window is shifted to be centered on every point in
the original image where the window is fully contained in the image, as shown in
Figure 3.1. The window size used in the calculations for this thesis is 3x3. Each of
the six spatial feature extraction techniques are performed on the pixels within the
windowed region, with the results becoming the new pixel values in the six extracted
image bands. Due to the way the window is placed, there will be a one pixel border
of zeros in the new bands. For more details on the spatial feature band extraction,
see Appendix A. An actual example showing an original image along with the six
spatial bands extracted from can be seen in Figures 3.2 and 3.3. (These bands have

been scaled so the maximum gray level is 255.)

3.3 Morphology

The close minus open morphological transform that was described in Chapter
IT is performed on the image using the following Matlab script file and functions:
cmo.m, closing.m, opening.m, erosion.m, and dilation.m. These are included in

Appendix B.

The script file cmo.m loads the image data file and allows the user to define the

morphological kernel, B. These two data matrices are then passed to the function
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For each shift, the spatial algorithms are implemented and
the results are put in the center point (p) of the window in
the new image bands. (The 3x3 window produces a one
pixel border of zeros in the new image bands.)

Figure 3.1 How the Khoros spatial bands are created.

Figure 3.2 The original image.
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Band 6

Figure 3.3 Khoros spatial band images.




closing.m which performs a dilation of the original image and then an erosion of
the dilated image. Then the original two matrices are passed to opening.m which
performs an erosion followed by a dilation. Finally, the opened image is subtracted
from the closed image to complete the close minus open transform, and the resulting
image is ready to be put into the classifying code. A step by step example using real

images and showing each of these stages is shown in Figures 3.4 and 3.5.

Image A Kernel B

Dilation Erosion

s

Closing Opening

Figure 3.4 A step by step example of gray-scale morphology.
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Close Minus Open

Figure 3.5 The output for the gray-scale close minus open function.

In Figure 3.4 the kernel is chosen to match the size of the target object (the
scud in this case). The dilation expands the image and creates large bright areas
where there were bright (hot) areas in the original image. In this case, there is a
large bright area corresponding to the scud location. In just the opposite way, the
erosion shrinks an image and creates large dark areas where there were dark (cold)

spots in the original image.

Ideally, the result of a closing should be bright areas where there are bright
targets in the image, while the result of the opening should be dark areas where there
are dark targets in the image. In both cases, the backgrounds should be similar, so
when the CMO is completed, the background will subtract away, leaving both hot
and cold targets brighter than the new background level. Figure 3.5 shows how the
scud location is brighter than the background. The locations of the small targets
in the foreground are only slightly brighter than the areas around them. The CMO
transform did not perform as well on the small targets because the kernel size was

chosen to match the scud.

3.4 Classtifying Code

The code used to find the error incurred through classification was obtained
from Curtis Martin and modified to give the output information of interest to this

thesis work [11].




Matlab script files are used to load the output of the various image processing
techniques and put the data into a form suitable for use in the classifying code.
These files pass a target matrix, a background matrix, the Parzen window size, and
the number of nearest neighbors to be used in the classifying code. Both the target
and background matrices must be created so that the columns represent separate
data points (pixels in the case of the IR images) and the rows contain the features
associated with those points. The two matrices do not have to be the same size, but
they must contain the same number of rows (features). Martin’s original classifying
code is then used to determine the best values to input for the window size and the

number of nearest neighbors.

3.4.1 Bayes Rule. In order to understand the calculation of the error
probabilities, it is useful to note the decision method. The Bayes decision rule
used in this code is a manipulation of Equation 2.4. It is called the log-likelihood

discriminant function of z and is expressed by

51

el
I(z) = -1 ool & 0 (3.7)
[11]. The a posteriori probability p(s;|z) is
plale) = EOT) (35)

where P(s;) is the a priori probability for class s;, p(z) is the pdf of z, and p;(z) is the
class conditional pdf of z for class s;. Substituting this into Equation 3.7, assuming
equal a priori probabilities, replacing p;(z) with its estimate p;(z), and introducing

a threshold ¢ to compensate for biases in the estimation, the result becomes

(o) = —in 222) 2 (3.9)

A

Pa(z) &

[7, 11].




3.4.2 Martin’s Unmodified Code. The original unmodified code can be
seen in Appendix C. In this original code, the hand-segmented target and non-target
background sets, and a range of values for k and k are passed to the pknn.m function.
Then the following procedure is performed five (the number of tests specified) times

and the results are averaged together to obtain the final Bayes error estimate plots.

e For each set, every fifth point is taken as a test sample and the rest of the

points are left over samples used to create the covariance matrices.

e The sample sets and inverse covariance matrices are passed to the function
compute_distances.m which computes the squared Mahalanobis distances be-
tween all the points, both inter-class and intra-class. The distance matrices

formed are then returned to pknn.m.

o Next, for each value of k, the density estimates and the resubstitution and
leave-one-out discriminant values are calculated for the k-NN technique. From

Equation 2.11 the k-NN density estimation is

k—1
NV a2 [ (@™, 2 )]

m)

(! (3.10)

where z{(™ is the rth sample of class s,,. When i = m, the resubstitution
estimate is obtained by counting (™ as its own nearest neighbor, while the
leave-one-out estimate does not, but replaces N; with (N;—1) [11]. Substituting
this into Equation 3.9, the discriminant function is

N TqY?  n d%(mgm),wgcl_)NN)_

No| 32512 * EIH d3( (m)

(3.11)
2\Tr amk—NN)

(™) = In
These values are passed to classify.m which calls min_error.m to find the re-
substitution minimum error and threshold. This is done by determining how
the two discriminant value sets overlap, varying a threshold over that region,

and counting the errors (misclassifications). The resubstitution minimum er-
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ror and threshold values are returned to classify.m and then the leave-one-out
minimum error and threshold are calculated in a similar fashion. These error

values are then returned to pknn.m.

e The same procedure is followed for the Parzen window technique for each
value of h, but using different equations for the density estimation and the

discriminant values. The resubstitution density estimate is

1 Yo wﬁm)—w(i)
N = ¥ > ﬁk" (———h 1 (3.12)

i =1

while the leave-one-out estimate is
1 [& 1 [am—2P\ k(o)
Alp(M — = o1 T J M
B(e;™) M—lkgmh( - |- (3.13)

Substituting these into Equation 3.9, using a Gaussian window, and manipu-

lating the equations, the resulting likelihood ratios for the resubstitution (R)

method and leave-one-out (L) methods for class s; and sg, respectively, are

N1|El|l/2 E;V_l exp(— d(m(m) zc )/2h2)

2
Ir(z(™) = In —1In . 3.14
R( ) N2IZ2|1/2 Eé\zl ea:p( d%( (m) (2))/2h2) ( )
(Vi = DIZa | S eap(= ~&2(zM, zM)/2h7) — 1
Ip(zV) = In 22 -1 o A (3.15)
No| 32|V Y52 exp(—dj(z;’, ;) /2h?)
lL(:c(-Z)) =1In M| EA [ —1In Zﬁvll eap (= 1(:1:;2), X )/2K) . (3.16)
d (N =DIZ2l? 7 5l eap(—di(al?, §2>)/2h2)—1

For a complete description of the steps involved, see the work by Martin [11].

e All of the error values are then passed back to the driver script file where plots

can be created.

3.4.8 Modified Code.  The modified code used in creating the ROC curves

can be seen in Appendix D. The procedure used in the modified code is very similar
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to that in the original code. The values of A and & that gave the best results for the
leave-one out method in the original code are the ones used in the modified code.
These values, along with the hand-segmented target and background sets, are passed
to the pknn2.m function. The procedure is the same as before except that instead
of finding the minimum error and threshold, the min_error2.m function determines
where the two discriminant sets overlap and varies a threshold over the overlapping
region. For each threshold value, the error probabilities are calculated using the
following rule: the number of set 1 discriminant values below the threshold divided
by the total number of set 1 discriminant values is the probability of a hit, and the
number of set 2 discriminant values below the threshold divided by the total number
of set 2 discriminant values is the probability of false alarm. These probabilities are
then returned to the driver script where they can be plotted to obtain the final ROC

curves desired.

Because the data is finite, the probabilities are discrete and the ROC curves
created from them are not smooth. Each of the ten tests creates ROC curves of
the form in Figure 3.6. Therefore, there needs to be a way to average these curves
together to obtain an average ROC curve for each image processing technique. The
function that does this is interpolate.m, which can also be seen in Appendix D. It
makes the curves monotonic increasing and then uses the Matlab function interpl
to interpolate between the points, as shown in Figure 3.6. Then, once all ten curves
have a hit probability value at each probability of false alarm, they can be averaged

together to create the final ROC curve.

Due to the averaging involved, a confidence interval is also needed for the ROC
curve. In this case, the standard deviation ¢ is unknown, but an estimate s can be
calculated from the data. The distribution that can be used to compute limits on the

average value is the Student’s t distribution published by W.S. Gossett and perfected

3-10




ROC Interpolated ROC

Py

a

Py

a

Figure 3.6 Example showing ROC curve and the interpolated ROC curve used in
averaging.

by R.A. Fisher [2, 9, 17]. The confidence interval is given by

(ﬁ - t-OS‘\;—h': Pt t.os%) (3.17)

where p is the average hit probability, s is the standard deviation of the n samples
used, and tgs = 2.262 for a 95% confidence interval with (n — 1) = 9 degrees of
freedom [17].

3.5 Summary

This chapter described the methods used to process the images and create
ROC curves. The next chapter displays and describes the results obtained from
these methods.
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IV. Results
4.1 Preliminary Results

In order to create the ROC curves, values need to be chosen for both A and
k. This is done using the original unmodified code obtained from Martin [11]. The
output plots of this code show the total average error for resubstitution and the
two leave-one-out methods for varying values of h and k, as shown in the example
output in Figure 4.1. Here, the average error represents the percentage of total
misclassifications, both false positives (false alarms) and false negatives (misses).
The two leave-one-out methods, described in detail in Martin’s thesis, are produced
by two different threshold selection techniques [11]. Since the best values of k and k&
are found by trial and error, the h and k values that gave the smallest leave-one-out
(option 2) error in the output of the original code are used as inputs to the modified
code. The h and k values with the next smallest leave-one-out errors are used as
needed. In this work, the leave-one-out option 2 is used because it is less biased
than option 1. A compilation of the values of h and k that are actually used in the

construction of the ROC curves can be seen in the tables in each section.

4.2 Test Problems

The test problems consist of finding ROC curves for the test data sets, whose

actual distributions are shown in Figures 4.2 and 4.4.

For Test 1, both data sets are Gaussian distributions of points along the z
axis. In the figure, they are offset in the y direction for illustration purposes only.
The target set has zero mean and unit variance, and the non-target set has mean
¢ = 2 and unit variance. Due to the known properties of this data, points on the
empirical ROC curve can be found by varying the threshold along the x axis. The
ROC curves for Test 1 can be seen in Figure 4.3. The values of A and k used to
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( - Resubstitution, -- Leave-one-out 1, .. Leave-one-out 2)

Figure 4.1 The output for the original image using Martin’s unmodified code.

create the ROC curves are shown in Table 4.1, and the areas under the leave-one-out

curves are shown in Table 4.2.

Input Data | A | k

Test 1

3|15

Test 2

2135

Table 4.1 Values chosen for h and k for the test sets.

For Test 2, the target set has zero mean and unit variance, and the background

set has a mean along the z axis of g = 3 and unit variance. This is shown in

Figure 4.4. The data is arranged so the empirical ROC can be found by varying a

threshold along the z axis. The ROC curves for Test 2 can be seen in Figure 4.5. The

h and k values used are shown in Table 4.1, and the areas under the leave-one-out

curves are shown in Table 4.2.
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Figure 4.2 Data sets for test 1.
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Figure 4.3 ROC curves for test 1.
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From the figures for both tests, it can be seen that the resubstitution and
leave-one-out estimates are good approximations to the empirical ROC curves for

the test data.

Test2 Data
3 T
2r J
1 ]
X
of X 1
X
-1} ]
2t J
_‘3 L L X1 1 L Fall 1 il
— -3 -2 -1 0 2 3 4 5 6

1
x-farget  o-background

Figure 4.4 Data sets for test 2.
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Figure 4.5 ROC curves for test 2.
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Input Data | ROC Area | ROC Area
(k-NN) (Parzen)

Test 1 .8652 .9020

Test 2 9805 9820

4-5

Table 4.2 Areas under the ROC for the test data sets.




4.8 Military Target Image (Targets v. Background)

The original IR image used in this section can be seen back in Figure 1.2. The

actual values used for 4 and k are listed in Table 4.3.

Input Image h | k
Original Image 3 |20
CMO Morphological Filtered Image | 0.1 | 22
Band 1 (mean) 2 132
Band 2 (variance) 9.7 37
Band 3 (contrast) 6.5 | 34
Band 4 (angular 2" moment) 3 135
Band 5 (entropy) 3 (35
Band 6 (dispersion) 0.2 9
All 6 bands 0.3 |26
Bands 1, 2, 3, & 6 1 120

Table 4.3 Values chosen for k and k for the target image of Figure 1.2.

4.8.1 Original Image. The ROC curves created using target and back-
ground matrices obtained from the original image are shown in Figure 4.6. These

curves show the probabilities of hit pixels versus false alarm pixels.

4.3.2 Spatial Bands.  The ROC curves obtained for the six separate spatial
feature bands can be seen in Figures 4.7 through 4.12. The ROC curves for the
combinations of the spatial feature bands can be seen in Figures 4.13 and 4.14. As
can be seen in the figures and table, each spatial band on its own does not outperform
the original unprocessed image, the exception being band 1. But when the bands are
combined, the resulting ROC curves are better then the original ROC. Therefore,

combining the spatial bands will produce a better segmentation technique.

4.3.8 Morphological Filter.  The CMO morphological filter in this section
uses a 10x50 pixel size kernel. The ROC curves in Figure 4.15 show that this seg-
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Figure 4.6 ROC curves for the original image.
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Figure 4.7 ROC curves for band 1 (mean).
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Figure 4.8 ROC curves for band 2 (variance).
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Figure 4.9 ROC curves for band 3 (contrast).
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Figure 4.10 ROC curves for band 4 (angular 2" moment).
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Figure 4.11 ROC curves for band 5 (entropy).
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Figure 4.12 ROC curves for band 6 (dispersion).
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Figure 4.13 ROC curves for all six bands.
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Average ROC Curve for Bands 1,2,3,& 6 (k-NN) Average ROC Curve for Bands 1,2,3, & 6 (Parzen)
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Figure 4.14 ROC curves for bands 1, 2, 3, and 6.

mentation technique performs better than the original unprocessed image as well
as the spatial bands and the combined spatial bands. This is the expected result,

considering the output processed images are of the types in Figures 3.3-3.5.

4.8.4 Section Summary.  The ROC curves produced in this section show
the performance of the image processing techniques. Of the techniques used here,
the morphological CMO algorithm provided the best results, followed by the com-
binations of spatial feature bands. These are qualified as being better because the
ROC curve is higher than those of the unprocessed image and the single spatial
band features. Another way to measure this is by calculating the area under the
ROC curve. These areas give numbers that can be compared. In many cases curves
with larger areas are better, but that is not always the case. Two curves with equal
areas may look entirely different, so which one is better depends upon the specific

application. The areas under the average leave-one-out curves have been calculated

and tabulated in Table 4.4.
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Figure 4.15 ROC curves for the 10x50 morphological CMO image.

Input Image ROC Area | ROC Area
(k-NN) (Parzen)
Original Image 770 7546
CMO Morphological Filtered Image 9744 9716
Band 1 (mean) .8006 7645
Band 2 (variance) 7050 7239
Band 3 (contrast) 7931 7480
Band 4 (angular 2" moment) .7001 5152
Band 5 (entropy) .6920 5223
Band 6 (dispersion) 6822 .6920
All 6 bands .8881 .8886
Bands 1, 2, 3, & 6 3600 8798

Table 4.4 Areas under the leave-one-out ROC curves.
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4.4 Scud Image (Scud v. Background and Other Targets)

The image from Figure 1.2 is also used in this section, but instead of identifying
target versus non-target pixels, scud pixels are identified versus non-scud pixels. In
this case, the other targets (tanks, trucks, etc.) are considered to be in the non-scud

pixel set. The h and k values used can be seen in Table 4.5.

Input Image h|k
Original Image 3|15
CMO Morphological Filtered Image | 1 | 20
Band 1 (mean) 1|5
Band 2 (variance) 7115
Band 3 (contrast) 1|15
Band 4 (angular 2" moment) 3|15
Band 5 (entropy) 3115
Band 6 (dispersion) 2120
All 6 bands 115
Bands 1, 2, 3, & 6 115

Table 4.5 Values chosen for ~ and k for the scud image of Figure 2.

4.4.1 Original Image.  The ROC curves created using scud and non-scud
matrices obtained from the original image are shown in Figure 4.16. Comparing
Figure 4.16 with Figure 4.6, the scud versus non-scud pixel classification did not
perform as well as the target versus non-target. This happens because the other
target pixels in the image are similar to scud pixels, or at least more similar to the

scud pixels than the background pixels.

4.4.2  Spatial Bands.  The ROC curves obtained for the six separate spatial
feature bands can be seen in Figures 4.17 through 4.22. The ROC curves for

the combinations of the spatial feature bands can be seen in Figures 4.23 and 4.24.
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Average ROC Curve for Scud Original Image (k-NN)

Average ROC Curve for Scud Original Image (Parzen)
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Figure 4.16 ROC curves for the scud original image.
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Figure 4.17 ROC curves for the scud band 1 (mean).
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Average ROG Curve for Scud Band 2 (k-NN)
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Figure 4.18

Average ROC Gurve for Scud Band 3 (k-NN)

Probability of Hit
e o © 2 o o
w - R4l o ~3 <o

o
o
T

01F

P - - Resubstitution
h) . e e A bounds
— Leave-one-out
=~ L bounds

x 1 1 2 1 1

: L
0.1 02 03 04 05 06 07 08 09
Probability of False Alarm

Average ROC Curve for Scud Band 2 (Parzen)

Probability of Hit

- ~ Resubstitution
o2¢ L R bounds ¥
— Leave-one-out
orr »—<= L bounds I
0 1 L Il L J 1 L 'l 1
0 0.1 02 03 04 05 086 07 08 09 1

Probability of False Alarm

ROC curves for the scud band 2 (variance).

Average ROG Curve for Scud Band 3 (Parzen)

0.9

08

o
o

Probability of Hit
(=2
o

0.4
03
: = = Resubstitution
02F l’ P R bounds 5
/) 7 —— Leave-one-out
01f + ) /-’ «=+= L bounds 1
0 0.1 02 03 04 05 06 07 08 09 1

Probability of False Alarm

Figure 4.19 ROC curves for the scud band 3 (contrast).
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Figure 4.20 ROC curves for the scud band 4 (angular 2" moment).
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Figure 4.21 ROC curves for the scud band 5 (entropy).
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Figure 4.22 ROC curves for the scud band 6 (dispersion).
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Figure 4.23 ROC curves for all six bands for the scud.
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Average ROG Curve for Scud Bands 1,2,3 & 6 (k-NN) Average ROC Gurve for Scud Bands 1,2,3 & 6 (Parzen)
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Figure 4.24 ROC curves for bands 1, 2, 3, and 6 for the scud.

These again show that combining the bands seems to give better results than using

each band alone.

4.4.8 Morphological Filter.  The ROC curves for the CMO morphological
filtered scud image can be seen in Figure 4.25. Just as for the target versus non-
target section, the ROCs created from the morphological processed image are better
than those of the original and the spatial bands. Even so, these ROC curves are

not as good as those for the target versus background for the same reason as stated

before.

4.4.4 Section Summary. The ROC curves produced in this section show
the performance of the image processing techniques when used to find only the scud.
Of the techniques used here, the morphological CMO algorithm provided the best
results, followed by the combinations of spatial feature bands, just as in section 4.3
for the target versus non-target problem. The areas under the average leave-one-out

curves have been calculated and tabulated in Table 4.6.
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Figure 4.25 ROC curves for the 10x50 morphological CMO scud image.

Input Image ROC Area | ROC Area
(k-NN) (Parzen)
Original Image 6015 .5811
CMO Morphological Filtered Image .8528 8731
Band 1 (mean) .6188 .5814
Band 2 (variance) 1337 6473
Band 3 (contrast) .6021 .5805
Band 4 (angular 2" moment) 5187 5215
Band § (entropy) 5144 5289
Band 6 (dispersion) 7393 6951
All 6 bands 1756 7936
Bands 1, 2, 3, & 6 71561 7459

Table 4.6 Areas under the leave-one-out ROC curves.
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4.5 Breast Cancer Images (Cancerous v. Healthy)

The methods developed to estimate the hit and false alarm probabilities for
the military target problem can also be applied to other areas, such as the breast
cancer problem. The breast cancer images used in this research were provided by

The University of Cincinnati. An example image can be seen in Figure 4.26.

Breast Cancer Image with Tumor

Figure 4.26 A breast cancer image with a tumor.

A part of the image within the marked area is used as the target set, and a sec-
tion from the upper right corner (outside the marked area) is used as the background
set. These signify tumor and healthy tissue, respectively. The resulting ROC curves
for h = 1 and k = 15 are displayed in Figure 4.27. The areas under the average
leave-one-out ROC curves for the k-NN and Parzen methods are .8531 and .8084,

respectively.

4.6 Breast Cancer Images (Malignant v. Benign)

As well as finding tumors, the code is used to find the probabilities associ-

ated with finding malignant versus benign image pixels in the tumors. Examples of
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Average ROG Curve for The Tumor (k-NN) Average ROG Curve for The Tumor (Parzen)
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Figure 4.27 ROC curves for cancerous versus healthy tissue.

truthed pieces of the images showing malignant and benign tumors can be seen in

Figure 4.28.

Following the ordering from left to right in Figure 4.28, each pair of malignant
and benign tumors are used as target and non-target input sets to the ROC code.
The leave-one-out ROCs for each trial are shown in Figure 4.29, and a ROC for all
six pairs combined is shown in Figure 4.30. Table 4.7 shows the values used for A

and k for each of the six pairs of images.

The ROC curves produced in this section show the ability of the algorithm
to determine the probability of distinguishing between malignant and benign tumor

pixels. As in previous sections, the areas under the ROC curves have been calculated

and are listed in Table 4.8.

Next, the same six pairs of malignant and benign tumors are put through the
angular 2" moment spatial feature extraction in Khoros and the ROC analysis is
performed. The h and k values used to create the ROC curves are listed in Table 4.9.
The leave-one-out ROC curves for each pair are shown in Figure 4.31 and the ROC
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Malignant Tumors

Benign Tumors

Figure 4.28 Examples of malignant and benign tumors.

Input Images | h | &k
First pair 2125
Second pair | 5 | 20
Third pair 1138
Fourth pair 1110
Fifth pair 3120
Sixth pair 1120
All 6 pairs 5135

Table 4.7 The h and k values for the malignant v. benign tumors.
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Input Images | ROC Area | ROC Area
(k-NN) (Parzen)

First pair .9569 .9629
Second pair .6907 .6910
Third pair 9019 .8842
Fourth pair 1 1
Fifth pair L7157 .7234
Sixth pair 8212 .8302
All 6 pairs .7020 1454

Table 4.8 Areas under the ROC for the malignant v. benign tumors.

curve for all six pairs combined is shown in Figure 4.32. The areas under the curves

are listed in Table 4.10.

Input Images | h | k
First pair 1130
Second pair | 1|30
Third pair 3135
Fourth pair | 2 | 40
Fifth pair 2|50
Sixth pair 1130
All 6 pairs 4130

Table 4.9 The h and k values for the malignant v. benign tumors after angular 2™
moment is performed.

When comparisons are made between the unprocessed images’ ROC curves and
areas and the angular 2"¢ moment processed images’ ROC curves and areas, it can be
seen that the unprocessed images are better classified. It turns out that processing
the images through the Khoros angular 2" moment spatial feature extraction did

not improve the segmentation ability of the images. In fact, it made it worse.
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Figure 4.31 ROC curves for malignant versus benign tumors after angular 2"¢ mo-

ment is performed.
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Figure 4.32 ROC curves for malignant versus benign tumors after angular 2" mo-
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Input Images | ROC Area | ROC Area
(k-NN) (Parzen)
First pair 7051 6279
Second pair .6691 5071
Third pair 7470 .6025
Fourth pair 7226 6701
Fifth pair 7306 4973
Sixth pair 7113 4987
All 6 pairs .5000 4969

Table 4.10 Areas under the ROC for the malignant v. benign tumors after angular
274 moment is performed.

4.7 Segmented Images

In this section each pixel in the image is classified as target or background,
and a new, segmented image is created. The thresholds used to make the decisions
are created by putting hand-segmented target and background matrices through the
ROC code, choosing a desired hit probability, and finding the discriminant value
that corresponds to that hit probability. After the threshold is chosen, discriminant
values are calculated for each pixel. Each pixel is classified by determining which
side of the discriminant threshold it falls on. A problem encountered was that the
images were too large to compute all the new pixel values at once. So, each line in

the image was done separately.

The original image is segmented using a hit probability of 80%. The morpho-
logical filtered image is segmented using a hit probability of 95%. These values are
chosen from the ROC curves in Figures 4.6 and 4.15. The new segmented images
can be seen in Figures 4.33 - 4.35. In the segmented images, the background pixels

are black and the target pixels are white.

From the images, it can be seen that the morphological filtered image out-

performed the original unprocessed image in segmentation. It is easy to see that
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Figure 4.35 The segmented morphological filtered image.
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more of the background is correctly identified as background. But even though this
morphological filter helped in the segmentation, it still did not perform as well as

had been hoped.

To take the segmentation process further, the segmented morphological filtered
image is correlated with a 10x50 kernel and thresholded. These new segmented
images, with two different threshold values (250 and 325), are shown in Figure 4.36.
This extra processing has eliminated much of the background, but it still shows false

alarms and misses.

Figure 4.36 The correlated and thresholded morphological filtered image.
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4.8 Summary

The tests performed using the ROC code showed that the estimates give a
good approximation of the empirical ROC curves for the data. On that assumption,
the algorithms were performed on real infrared images. These output ROC curves
and the areas under them can be used as a measurement system to determine the

best image processing algorithms for different images.
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V. Conclusions

5.1 Introduction

The main objective of this research is to develop ROC curves to compare IR
image processing techniques. The non-parametric techniques used to approximate
the density functions and create the ROC curves were tested on problems with
known distributions, then applied to the IR image problems. Chapter II provided
the theory behind the methodology in Chapter III, and Chapter IV presented the

resulting ROC curves. This chapter summarizes the results of this research.

5.2 Summary of Significant Results

5.2.1 Test Results.  The test problems show that the ROC curves created
from the density estimation process are good estimates of the empirical ROC curves

of the given data sets.

5.2.2 IR Results. After showing that the estimated ROC curves approx-
imate the true curves for the test data, the techniques are applied to actual IR
imagery. In trying to identify target versus background pixels, the ROC curves in-
dicate that combining the spatial features bands gives better results than using no
processing on the image. Furthermore, the gray-scale CMO morphological opera-
tor provides better results than both the unprocessed image and the spatial feature

bands. So in this case, the CMO is the better image processing technique.

Since the USAF is interested in finding scud missile launch vehicles, the ROC
curve techniques are used to identify scud versus non-scud pixels in the same images.
The results obtained were similar to those of the target versus background problem.
The CMO algorithm is the better processing technique. One result to note is that
the ROCs created for the target case are better than those for the scud case. This
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is due to the fact that the other target pixels (tanks, trucks, etc.) are similar to the

scud pixels, or at least more similar to the scud pixels than the background pixels.

5.2.3 Breast Cancer.  The ROC estimation techniques are applied to the

breast cancer x-ray images in order to show that it is possible to determine the hit

and false alarm probabilities associated with finding breast cancer tumors.

This was taken one step further to the problem of determining the probabilities
of malignant and benign tumors. The angular 2"¢ moment was performed on the
tumor images, and the ROCs obtained were compared with the ROCs from the
unprocessed images. It turns out that calculating the angular 2" moment did not

improve the segmentation ability of the tumors.

5.3 Conclusions

The results of this thesis lead to the following conclusions:

e The test data sets show that the estimated ROC curves developed in this

research are a good approximation to the actual ROC curves from the images.

o The ROC curves can provide an effective means of measuring the performance

of image processing and segmentation techniques.

o Another means of measuring the performance of image processing techniques is
the area under the ROC curves. A larger area (with area=1 being the highest)

generally signifies a better image processing or segmentation technique.

e The ROC analysis used here can be used on a variety of images in different

applications, not just in the military target scenario.

o Of the image processing techniques used in this thesis, the CMO morphological
filter produced the best results. For the target versus background problem, the
areas under both the k-NN and Parzen estimated ROC curves were increased

from .7770 and .7546 for the original image to .9744 and .9716 for the mor-
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phological processed image. For the scud versus non-scud problem, these ROC

areas were increased from .6015 and .5811 to .8528 and .8731.

5.4 Recommendations

This research can be continued in the following areas:

o Instead of calculating discriminant values to create a one-dimension decision
problem, leave the data in n-dimensional space and use hyper-planes as the

decision boundaries.

e Discover a way to find actual probabilities of hit and false alarm at the target

level rather than the pixel level.
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Appendix A. KHOROS
A.1 Cantata Workspace

The Cantata workspace is the image processing environment used in this re-
port. To get this workspace, you must have the path set up. This should be done
when you receive your account. If not, ask Dave Doak or Dan Zambon to help you
set the path. Once this is done, just go into a command tool and type cantata to

get to the cantata workspace shown in Figure A.1.

A.2  Input Images

In the workspace, there is a box called input sources. Pull down the menu
from that box and you can either input an image file or create a file in Khoros. To
input a file, choose input data file. When the input file window appears, you can
choose any of the standard images, or you can use your own by clicking the user
defined box and typing in the file name or using the browser. Use the browser by
clicking on user specified file. This will take you to a file manager where you
can choose your file. You can move through your directory and even get a file from
a classmate’s directory. Once you choose your file, click on the glyph box. This
will create an input glyph containing your input image that you can position on the

workspace with your mouse.

A.3 Using Glyphs

Once you have an input image, you can begin processing it by selecting other
glyphs and connecting them. Connect them by clicking the right side arrow on one
glyph to the left side arrow of the next glyph. An example of connected glyphs in
a workspace is shown in Figure A.2. You can run your program by clicking on the

run box or by turning on each glyph separately using its on/off switch.
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Figure A.2 Cantata workspace glyphs.




An example glyph can be seen in Figure A.3. Use the arrows to connect the
glyph to other glyphs in the workspace. All of the dark arrows must be connected
to something or there will be an error, but the light arrows are only used in some
options for the glyph. To delete a glyph, click on the bomb symbol in the upper
left corner. To turn a glyph on, click on the switch in the upper right corner. To
change any of the settings on the glyph, click on the top middle box to get the menu
window for that glyph.

A.4 Commonly Used Functions

This section contains information on where to find some useful commands, as
well as some examples and a few things you should know about them. This is only

a partial list, but it contains the ones I found most useful.

A.4.1 Convolution (2D). You can find convolution under image pro-
cessing, spatial filters. You just need to input an image and a kernel. A faster
way to convolve if you have large images is to take the FFT, multiply, and inverse
FFT. To show you what to expect as output, the two images in Figure A.4 have
been convolved to give the output seen in Figure A.5. The dimensions of the images

shown here are proportional to the actual dimensions of the images that were used.

A.4.2 Correlation (2D). There is not a built in correlation function. To
perform a correlation, flip the input kernel image (both ways using the flip option)
and perform a convolution. If you have complex images, you must conjugate and flip
the kernel. An example of the correlation of the two images in Figure A.4 is shown

in Figure A.6.

A.4.83 Data Conversion. Sometimes, you need to convert data from one

type to another. Usually, Khoros will let you know by giving you an error and
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Figure A.4 The input image and kernel.

Figure A.5 The resulting convolution.

Figure A.6 The resulting correlation.
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Figure A.7T An example image.

telling you which type it needs. Then just go to conversions, data conversion

and choose the type you need.

A.4.4 FEzpand. To enlarge an image, click on image processing, geo-
metric manipulations, expand image. Then choose a scale factor. Be aware

that resolution does not increase. Each pixel just gets bigger, as you can see in

Figure A.8.

A.4.5 Extract Part of an Image. Look under image processing, sub-
region. You can determine the coordinate values you desire by running the mouse

over the original image. An example of a segmented image is shown in Figure A.8.
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Figure A.8 An extracted image and corresponding expanded image.

A.4.6 File Formats. If you want to input or export files from between
different programs such as Khoros and Matlab, just do a file conversion by clicking

on conversions, standard file format and then choose the file type you need.

If you want to convert between raw or ascii and VIFF files, look under con-

versions, raw file format.

A.4.7 Filters (Frequency).  Frequency filters are found under image pro-
cessing, frequency filters. These assume that your input image is already in the
frequency domain. An example output of a high-pass frequency filter is shown in

Figure A.10.

A.4.8 Filters (Spatial).  Spatial filters are found under image processing,
spatial filters These assume that the input image is in the space domain. The edge
extraction filters have the same effect as converting to the frequency domain and

doing high-pass frequency filtering. An example of this is shown in Figure A.10.

A.4.9 Flip. Look under image processing, geometric manipulations.
Input the image and choose which way you want to flip it. For a correlation, flip the

image both top-for-bottom and right-for-left.

A.4.10 Fourier Transform (FFT & IFFT).  The 2D Fourier transform is

located under image processing, transforms. You can choose either forward or
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Figure A.9 Lenna.

Figure A.10 Lenna after using an edge-extract spatial filter and high-pass frequency
filter.
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inverse. One requirement is that the input images have dimensions that are a power

of two, so you may need to pad them.

A.4.11 Multiplication.  Look under arithmetic, binary arithmetic. This
performs a pixel by pixel multiplication of the images. When you multiply two

images, they must be the same size.

A.4.12 Pad an Image. Look under image processing, subregion. Input

the new row size and column size of the padded image.

A.4.18 Spatial Feature Band Fztraction. The Khoros image processing
environment has a built-in function to extract spatial features from images. These
features are the mean, variance, contrast, angular 2°¢ moment, entropy, and disper-
sion. The following equations describe how each spatial feature is calculated. The
algorithm assumes there are K gray levels in the image and p(k) = the probability

of occurrence of each gray level k.

mean, y = Ek] = Z kp(k) (A.1)
k=0
variance = E[k?] — E[k]* = Z: k2 p(k) — lz_: kp(k)] (A.2)
K
contrast = » _ k? p(k) (A.3)
angular 2°¢ moment = z—: p*(k) (A.4)
entropy = — 3 p(k) log, p(F) (A5)
dispersion = 2_: |k — | p(k) (A.6)
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Figure A.11 shows how the Khoros glyphs are connected in order to extract the
spatial feature bands from the image. The input glyph loads the image, arf2viff
converts the input data to the VIFF type used in Khoros, vextract is used to extract
the 356x700 image, and vconvert converts the data type to byte which is needed
in vspatial. The menu in the vspatial glyph can be used to select the window size
and the spatial feature bands to be extracted. The vbandspt3 glyphs extract each
spatial band separately so it can be stored as a separate file through the viff2mat
glyph operation. After removing the square brackets at the beginning and ending of
the files, they can be loaded into Matlab. These new image band files are used in

the classifying code.

‘o the KHOROS Systen

Edit %PRDGRAI'I UTILITIES INPUT SOURCES | CONVERSIONS  § i INAGE PROCESSING s&mm PRDEESSING%
Workspace WLBOX RUUTINE;E QUTPUT : PRITHHETIC  § | IHAGE ANALYSIS REHOTE & GIS
] Main Cantata Workspace

A et IR R X NI s |
RESET §\ \ \ \ \\\\\\ % Y N l
-1 REDRAM \ 3 \ X Y\;A e Q |
i ROUTINES %i« % B S -5\_: viff2mat \\\ 1
R g foc s AR g %%‘5:\ i

;@ i\%\

-

.

Figure A.11 A Cantata workspace showing the Khoros glyphs used to extract spa-
tial features.
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Example

image output spatial band images
window
a|b|c|d]|a 0j|0jo]|o0 (O
e|d|f|aidb 0 |xl}x2x3|0
ald|d|a]|b — 0 | x4 x5{x6|0
bjlc|d]|c|b 0 | x7| x8 x9]0
ble [e]e|c 0]0]o0 IO 0

Figure A.12 How the Khoros spatial bands are created.

Using the example in Figure A.12 where a through f are various gray-scale
values, the following equations show the calculations for the first shift of the window

(where it covers the nine pixels in the upper left corner.)

mean: zl =

atbtctetdt f+atdtd
9

9

contrast: o1 = (3) + 7 (3) + (3) + 2 (3) 4.2 (5) + /3

ang 2 moment: o1 = (3)"+ (5)"+ (1) + (8) + (3) + ()

entropy: =1 = —(£)1ogs(3) — (3) s (3) — (3) 0w (3) — (oma() -
(3) loga (5) — (5) 108 ()

dispersion: z1 = |a— p| (2)+ [b— pl (§)+lc— ul (3)+ I1d — ul () + e — ul (£)+

_ atbtctetdtftatdid
Foul(2) . where = etptetetdsres

. 20320 .20 20924 £2 31,2192 2 2
variance: zl a’+b4ct+e’+d 4 f +a’+d°4d (a+b+c+e+d+f+a+d+d)
2

A.5 User Defined Functions

In the image processing I have been doing, it was necessary to bring in a
program that could convert ARF image files to VIFF files. The program was obtained
through Wright Lab and was already put into a form suitable for bringing it into
Khoros. I’'m not sure exactly how it was done. All I had to do was to click on
workspace and then file utilities to get a menu. Then I clicked on UIS file and
got the browser where I chose the file I wanted to bring into Khoros. Doing this
created a glyph that could be manipulated like any other glyph in Khoros.
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A.6  Printing an Image

To print an image directly from Khoros, you can use the menu to choose
output and then print image. Choose the format you need and then in the send
to printer box, type | lpr -Psparc3 (or any printer of your choosing.) Then run

that glyph.

An alternative to this is to save the image into your directory as a .ps file
then you can use a regular print tool to print the image. To do this, select from
the Khoros menu conversions then standard file format. When you get the new
window, select VIFF to Raster, the Khoros input file, and the name for the output
file. This will create a raster (.rs) file in your directory. Then just convert this to a

.ps file. This can be done in two ways:

1. In a command tool, type convert oldfilename.rs newfilename.ps. The new

postscript file will appear in your file manager.

2. In a command tool, type xv filename.rs. The image will appear. To get a
menu of options, click the left mouse button on the image. When saving the

image, you can choose the output file type postscript.

A.7 Workspace Utilities

A.7.1 Save a Workspace.  To save a workspace, pull down the workspace
menu in cantata. Choose file utilities and enter an output file name by typing it in
(or using the browser if the file already exists). After entering the file name, press

return.

A.7.2 Restore a Workspace. To restore a saved workspace, again choose
workspace followed by file utilities. Then enter an input file name by typing it in

or using the browser. The saved workspace will be restored to the screen.
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Appendiz B. Morphology Code
B.1 driver script file

% This script file performs the close minus open (CMO) algorithm on an image.
% (Uses image A and morphological kernel B to produce the CMO)

load origimage.dat;

A=origimage;
B=ones(10,50);

c=closing(4,B);
o=opening(A,B);
imageout=c-o;

save morph10x50 imageout

B.2  closing.m

% CLOSING: This function performs the gray-scale closing of an image by a

% structuring element

%

% Inputs: A : image

% B : structuring element

% Output: c : closed image

function[c]=closing(4,B)
temp=dilation(A,B);
c=erosion(temp,B);

B.3 opening.m

% OPENING: This function finds the opening of a gray-scale image A by the
% structuring element B.

% Inputs: A : image
P 8
% B : structuring element

% Output: c : opened image
P g

function[c]=opening(A,B)
temp=erosion(A,B);
c=dilation(temp,B);
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B.4 dilation.m

% DILATION: This function finds the gray-scale dilation of an image by a

% structuring element.

%

% [dilatedimage] = dilation(A,B)
%

% Inputs: A : image
[

% B : structuring element
%

% Output: dil: dilated image

%

function[dil]l=dilation(A,B)
[Arow,Acol]l=size(A);
[Brow,Bcoll=size(B);

newA=zeros(Arow+2*Brow-2,Acol+2%Bcol-2);
newA (Brow:Arow+Brow-1,Bcol :Acol+Bcol-1)=A;

for s=Brow:Arow+2*Brow-2
for t=Bcol:Acol+2*Bcol-2
dil (s-Brow+l,t-Bcol+1)=max(max(newA(s:~1:s-Brow+1,t:~1:t-Bcol+1)+B));
end ’
end

B.5 erosion.m

% EROSION: This function finds the gray-scale erosion of an image by a
% structuring element.

% Inputs: A : image
% B : structuring element

% Output: ero: eroded image
%

function[ero]l=erosion(4,B)
[Arow,Acol]l=size(A);
[Brow,Bcoll=size(B);

for s=1:Arow-Brow+i
for t=1:Acol-Bcol+1l
ero(s,t)=min(min(A(s:s+Brow-1,t:t+Bcol-1)-B));
end
end
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Appendixz C. Martin’s Code
C.1 driver script file

% Driver script file used to run Martin’s code and create the plots

load targetset;
load backgroundset;

k=2:50;
h=.1:.1:10;

opt=1;
[Rp1, Lpi, Rk1, Lki]

pknn(targetset ,backgroundset, h, k, opt);

opt=2;
[Rp2, Lp2, Rk2, Lk2]

pknn(targetset,backgroundset, h, k, opt);

mRpi=mean(Rp1) ;
mLpl=mean(Lp1) ;
mRk1=mean (Rk1) ;
mLkl=mean(Lk1) ;
[minp1,ip1] = min(mLpl);
[mink1,ik1] = min(mLk1);

mRp2=mean (Rp2) ;
mLp2=mean(Lp2) ;
mRk2=mean (Rk2) ;
mLk2=mean(Lk2) ;
[minp2,ip2] = min(mLp2);
[mink?2,ik2] = min(mlk2);

figure(1)

subplot(2,1,1)

plot(k, mLki, ’--7, k, mRk1, ’~?); hold on

plot([k(ik1) k(ik1)], [mLk1(ik1) mRk1(ik1)], ’w*’);

plot(k, mLk2, ’:7);

plot ([k(ik2) k(ik2)], [mLk2(ik2) mRk2(ik2)], ’w#*’);
legend(’-?,’Resubstitution’,’-~?,’Leave-one-out (opt1)’,’:’,’Leave-one-out (opt2)?);
ylabel(’Average Error (%)’); xlabel(’k’);

title(°k-HN’); hold off

subplot(2,1,2)

plot(h, mLp1l, >--?, h, mRpl, ’~?); hold on

plot([h(ip1) h(ip1)], [mLp1(ip1) mRpi(ip1)], ’w*’);

ylabel(’Average Error (%)’); xlabel(’h’);

title(’Parzen’);

legend(’-’, ’Resubstitution’,’-~’,’Leave-one-out (optl)’,’:’,’Leave-one~out {opt2)?);
plot(h, mLp2, ’:7);

plot ([h(ip2) h(ip2)], [mLp2(ip2) mRp2(ip2)], ?w#*’); hold off
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C.2 pknn.m

% PKNN: Run Parzen and kBN procedure for X1, X2 10 times.
%

% (Rp, Lp, Rk, Lk] = PKNN(X1, X2, h, k, opt)
%

% Inputs: X1, X2: data sets (n x §¥1 and n x H2)
% h, k: values to use for h and k

% opt: 1 = threshold option 3

% 2 = threshold option 4

% 411 h’s must be greater than zero, and k must be between 2 and
% min(H1, §2)-1

% Outputs: Rp, Lp: Parzen R and L errors for each test (one test per row)
A Rk, Lk: k-NN R and L errors for each test

function [Rp, Lp, Rk, Lk] = pknn(X1, X2, h, k, opt)

[n1, H1] = size(X1);
[n2, H2] = size(X2);
if n1 "= n2
fprintf(2, ’Data sets X1 and X2 must have same number of rows
(features)\n?);
return;
end % if

% Keep this value on hand
dim = n1;
ntests = 10;

Rp = zeros(ntests, size(h,2));
Lp = zeros(ntests, size(h,2));
Rk = zeros(ntests, size(k,2));
Lk = zeros(ntests, size(k,2));

fprintf(1, ’Threshold Option = %d \n?, opt);
fprintf(1, ’Performing d independent tests: \n’, ntests);

for test = 1:ntests,
fprintf(1,’ Test #%d:\n’, test);

testsamps = test:ntests:Ni;
t1 = [1, testsamps+1];
2 [testsamps~1, H1];
others = [];
for i = 1:size(t1,2),
others = [others, t1(i):t2(i)];
end Y for i

x1 = X1(:, testsamps);
iS1 = cov(X1(:,others)?);

testsamps = test:ntests:N2;
t1 = [1, testsamps+1];
t2 = [testsamps~1, §2];
others = []1;
for i = 1:size(t1,2),
others = [others, t1(i):t2(i)];
end Y% for i

x2 = X2(:, testsamps);
iS2 = cov(X2(:,others)’);
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clear testsamps others t1 t2

nil = size(x1, 2);
n2 = size(x2, 2);
fprintf(1, > %d Class 1 samples, %d Class 2 samples\n’, ni, n2);

fprintf(1, ' Estimating and inverting covariance matrices ...\n’);
detratio = -0.5 * log(det(is2)/det(is1));

i81 = inv(iS1);

i82 = inv(is2);

fprintf(1, ’ Computing distances ...\n’);
[d11, d12, d21, d22] = compute_distances(xl, x2, iS1, iS2);

fprintf(1, ’ Classifying (Parzen) ...\n’);
Rerr = [];
Lerr = [];

for r = h,

% Compute sums:

temp = -0.5 / r~2;

s11 = sum(exp(temp * d11));
512 = sum(exp(temp * d12));
s21 = sum(exp(temp * d21));
522 = sum(exp(temp * d22));

1r1l = detratio - log((n2 * s11) ./ (nl1 * s21));
1r2 = detratio - log((n2 * s12) ./ (nl * s22));

111 = detratio - log((n2 * (s11 - 1)) ./ ((n1 - 1) * s21));
112 = detratio - log(((n2 - 1) * s12) ./ (n1 * (522 - 1)));

[rerr, lerxr] = classify(lr1, 1r2, 111, 112, opt);

Rerr = [Rerr, rerr];
Lerr = [Lerr, lerr];

end % forr

Rp(test,:)
Lp(test,:)

100 * Rerr / (n1+n2);
100 * Lerr / (ni+n2);

fprintf(1,’ Classifying (k-NN) ...\n’);

% sort distances
d11 = sort(dil);
d12 = sort(di12);
d21 = sort(d21);
d22 = sort(d22);

tr = detratio + log(ni/n2);
tll = detratio + log((n1-1)/n2);
t12 = detratio + log(ni/(n2-1));

Rerr = []1;
Lerr = [];
for i = k,
1rl = tr + 0.5 * dim * log(di1(di,:) ./ d21(i,:));

1r2

tr + 0.5 * dim * log(d12(i,:) ./ d22(i,:));
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111 = t11 + 0.5 * dim * log(d11(i+1,:) ./ d21(i,:));
112 = t12 + 0.5 * dim * Log(dl2(i,:) ./ d22(i+1,:));

[rerr, lerr] = classify(ir1, 1r2, 111, 112, opt);

Rerr = [Rerr, rerr];
Lerr = [Lerr, lerr];

end Y for i
Rk(test,:) = 100 * Rerr / (ni+n2);
Lk(test,:) = 100 * Lerr / (n1+n2);

end Y% for test
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C.83 compute_distances.m
% COMPUTE_DISTANCES: Compute K distances between samples in X1 and X2.

% [p11, D12, D21, D22] = COMPUTE_DISTANCES(X1, X2, invS1, invS2)

% D11 = class 1 distances for samples of class 1
% D12 = class 2 distances for samples of class 1
% D21 = class 1 distances for samples of class 2
% D22 = class 2 distances for samples of class 2

% invS1 and invS2 are the covariance matrix inverses (maybe estimated).
% X1 and X2 have one observation per column.

function [D11, D12, D21, D22] = compute_distances(X1, X2, invS1, invS2)
% NHumber of columns is the number of samples

B1 = size(X1,2);
B2 = size(X2,2);

% Allocate space

D11 = zeros(N1,H1);
D12 = zeros(N1,82);
D21 = zeros(N2,H1);
D22 = zeros(H2,H2);

% Calculate intra-class distances:
% Class 1:
for i = 1:§1-1
for j = i+1:H1
D11(i,j) = (X1(:,3j) ~ X1(:,1))? * invS1 * (X1(:,j) ~ X1(:,1));
D11(j,1i) = D11(i,j);
end
end

% Class 2:
for i = 1:N2-1
for j = i+1:N2
D22(i,3j) = (X2(:,3) - X2(:,1))? * invS2 * (X2(:,j) - X2(:,i));
D22(j,i) = D22(i,j);
end
end

% Calculate inter-class distances:

for i = 1:N1 % Rows for D12, Columns for D21
for j = 1:N2 % Columns for D12, Rows for D21

% Pull samples out of matrices only once

v = X2(:,3) - X1(:,1);

D12(i,j) = v’ #* invSl * v;

% These could be (-v), but there’s no reason for it. (note (j,i))
D21(j,i) = v?> * invS2 * v;

end
end

C-5




C.4 classify.m

% CLASSIFY: Select thresholds and classify resubstitution and

% leave-one-out discriminant values.

%

% [R, L] = CLASSIFY(Lr1, Lr2, L11, L12, option)

%

% Inputs: Lri, Lr2: resubstitution discriminant values
% L11, L12: leave-one-out discriminant values
% option: 1 = threshold option 3

% 2 = threshold option 4

%

% Outputs: R: Resubstitution error

% L: Leave-one-out error

function [R, L] = classify(Lr1l, Lr2, L11, L12, option)

% First get the minimum resubstitution error and threshold
fprintf(1,’ Resubstitution...’);

[R, t] = min_error(Lrl, Lr2);

fprintf(1,’done.\n’);

% How, depending on the option, get the minimum leave-one-out error
fprintf(1,’ Leave one out...’);
if optiom == 1
L = sum(L11 > t) + sum(L12 < t);
else
nl = size(L1l1, 2);
n2 = size(L12, 2);
L = 0;
fprintf(1,’Class 1...7);
for i = 1:mn1,
[err, t] = min_error(L11([1:i-1 i+1:n1]), L12);
if L11(i) > ¢
L=L+1;
end % if L11(i) > t
end Y% for i
fprintf(1,’Class 2...7);
for i = 1:n2,
[err, t] = min_error(L1l1l, L12([1:i-1 i+1:n1]));
if L12(i) < ¢
L=L+1;
end % if L12(i) < t
end Y% for i
end Y% if option == 1
fprintf(1,’done.\n’);
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C.5 min_error.m

% MIE_ERROR: Select threshold which gives the minimum error for

% classifying two sets of discriminants.

% This is designed to be used for any number of elements
% in each set. In the case of several minimum errors,

% the threshold that yields the same number of

% misclassifications from set 1 and set 2 is selected.

%

% [ERROR, THRESHOLD] = MIN_ERROR(SET1, SET2)

%

% Inputs: SET1, SET2: sets of discriminants from classes 1 & 2

% Outputs: ERROR: Minimum error obtainable
% THRESHOLD: "Best?" threshold yielding the minimum error

function [error, threshold] = min_error(setl, set2)

big = realmax ~ realmin;
search = 0;

% Eliminate infinities from the search.
infs = find(seti==inf);

set1(infs) = big * ones(size(infs));
infs = find(seti==(-inf));

set1(infs) = -big * ones(size(infs));
infs = find(set2==inf);

set2(infs) = big * ones(size(infs));
infs = find(set1==(-inf));

set2(infs) = -big * omes(size(infs));

min(setl);
max(setl);
min(set2);
max(set2);

A0 T
It

if b < ¢
threshold = 0.5 * b + 0.5 * c;
error = 0;
return;

end Y if

if (min([a b ¢ d]) == ¢) & (max{([a b ¢ d]) == b)
%pick ¢ or b at random.
choice = round(rand);
if choice ==
threshold = b + realmin;
else
threshold = ¢ ~ realmin;
end Y% if choice
error = sum(setl > threshold) + sum(set2 < threshold);
fprintf(1,’Bad decision rule: a=%d, b=%d, c=%d, d=%d\n’,a,b,c,d);
return;
end Y if

if(a<c&c<dgd<b)| (c<aka<bg&bcd)

lo = a;
hi = d;
elseif (a < c & c<b&b<d
lo = ¢;
hi = b;

else
% What’s left??? Write a message.write out a, b, c, and d
fprintf(1,’Equal condition: a=%d, b=%d, c=d, d=%d\n’,a,b,c,d);
threshold = .25 * a + .26 * b + .25 * ¢ + .25 * 4;
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error = -1;
return;
end Y% if

% go fish (in a limited pool)
pool = [setl(set1>=lo & set1<=hi) set2(set2>=1lo & set2<=hi)];

% Get one copy of each distinct value in temp
temp(1) = lo;
n = size(pool,2);
for i = 2:n,

temp(i) = min(pool(pool>temp(i-1)));

if temp(i) == hi

break

end % if
end Y% for
n = size(temp,2);

errl = zeros(1, n+l);
err2 = zeros(1l, n+l);

% Count the errors for each guess
for i=1:m,
erri(i) = sum(setl >= temp(i));
err2(i) = sum(set2 < temp(i));
end Y for
erri(n+1) = sum(setl > temp(n));
err2(n+1) = sum(set2 <= temp(n));

% Find the minimum total error
total = errl + err2;
error = min(total);
index = find(total == error);
if size(index,2) == 1
tidx = index;
else
diff = abs(erri(index) - err2(index));
mindif = min(diff);
didx = find(diff == mindif) ;
nminds = size(didx, 2);
if nminds ==
tidx = index(didx);
else
choice = round((mminds-1) * rand) + 1;
tidx = index(didx(choice));
end Y% if nminds
end Y% if size(index,2)

if tidx > 1 & tidx <= n
threshold = 0.5 * temp(tidx) + 0.5 * temp(tidx-1);
elseif tidx ==
lower = max([max(setl(seti<temp(1))) max(set2(set2<temp(1)))]1);
if size(lower,2) ==
threshold = temp(1) - realmin;
else
threshold = 0.5 * temp(1) + 0.5 * lower;
end Y% if size(lower, 2)
else
higher = min([min(set1(seti>temp(n))) min(set2(set2>temp(n)))]);
if size(higher,2) == 0
threshold = temp(n) + realmin;
else
threshold = 0.5 * temp(n) + 0.5 * higher;
end Y% if size(higher, 2)
end Y% if tidx...
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Appendiz D. Modified Code (ROC Code)
D.1  driver script file

% Driver script file to run the modified code and create ROC curves

load targetset;
load backgroundset;

h= 1;

k= 20;

[rhitp,rfap,rhitk,rfak,lhitp,1fap,lhitk,1fak]=pknn2(targetset,backgroundset, h,k);

[faave,rhitpave,rhitkave,lhitpave,lhitkave,rpu,rpl,rku,rkl,lpu,lpl,lku,lkl]=roccurve(rhitp,rfap,rhitk,rfak,
1lhitp,1lfap,lhitk,1fak);

x=faave;

% the best h & k from the original code’s output

figure(1)

plot(Pfa,Phit,’y*’)

hold on

plot(x,rhitpave,’r--’,x,lhitpave,’b-?,x,xpu,’r:’,x,rpl,’r:’ ,x,1pu,’b-.? ,x,1pl, ’b-.?)

axis([01 0 1])

xlabel(’Probability of False Alarm’);

ylabel(’Probability of Hit’);

title(’Average ROC Curve (Parzen)?’);

legend(’r--?,’Resubstitution’,’r:’,’R bounds’,’b-’, ’Leave-one-out’, ’b-.’,°L bounds’,’y*’,’Actual?);
hold off

figure(2)

plot(Pfa,Phit, ’y*’)

hold on

plot(x,rhitkave,’r--?,x,lhitkave,’b-’,x,rku,’r:’,x,rkl,’r:? ,x,1ku,’b-.? ,x,1k1,’b-. %)

axis([0 1 0 1])

xlabel (’Probability of False Alarm’);

ylabel(’Probability of Hit’);

title(’Average ROC Curve (k-HN)’);

legend(’r--’,’Resubstitution’,’r:’,’R bounds’,’b-’, Leave-one-out’, ’b-.’,’L bounds’,’y*’,’Actual’)
hold off

% area under leave-one~out ROC

ak=sum(1lhitkave)/length(lhitkave);
ap=sum(1lhitpave)/length(lhitpave);
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D.2 pknn2.m

% PKEN2: Run Parzen and kNN procedure for X1, X2 n times.

%

% Inputs: X1, X2: data sets (n x §1 and n x §2)

% h, k: values to use for h and k

%

%

% A1l h’s must be greater than zero, and k must be between 2 and
% min(¥1, §2)-1

%

% Outputs: rhitp: Probability of hit for Parzen resubstitution

% rfap : Probability of false alarm for Parzen resubstitution
% rhitk: Probability of hit for k-NN resubstitution

% rfak : Probability of false alarm for k-BN resubstitution

% lhitp: Probability of hit for Parzen leave-one-out

% 1fap : Probability of false alarm for Parzen leave-one-out
% lhitk: Probability of hit for k-NN leave-one-out

% 1fak : Probability of false alarm for k~NN leave-one-out

function[rhitp,rfap,rhitk,rfak,lhitp,1fap,lhitk,1fak]l= pknn2(X1, X2, h, k)

[n1, §1] = size(X1);
[n2, H2] = size(X2);
if n1 "= n2

fprintf(2, ’Data sets X1 and X2 must have same number of rows
(features)\n’);

return;
end % if

% Keep this value on hand
dim = n1;
ntests = 10;

fprintf(1, ’Performing %d independent tests: \n’, ntests);

rhitp=[1;
rfap=[];
rhitk=[];
rfak=[];
lhitp=[]1;
1fap=[1;
lhitk=[]1;
1fak=[];

counter=0;
for test = 1:ntests,
fprintf(1,’ Test #%d:\n’, test);

testsamps = test:ntests:Ni;
t1 = [1, testsamps+1];
t2 = [testsamps-1, N1];
others = [];
for i = 1:size(t1,2),
others = [others, t1(i):t2(i)];
end Y% for i

x1 = X1(:, testsamps);
iS1 = cov(X1(:,others)’);

testsamps = test:ntests:N2;
t1 = [1, testsamps+1];
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t2 = [testsamps-1, H2];
others = [];
for i = 1:size(t1,2),
others = [others, t1(i):t2(i)];
end % for i

x2 = X2(:, testsamps);
i82 = cov(X2(:,others)’);

clear testsamps others t1 t2

nl = size(x1, 2);
n2 = size(x2, 2);
fprintf(1, ’> Y%d Class 1 samples, %d Class 2 samples\n’, nl, n2);

fprintf(1, > Estimating and inverting covariance matrices ...\n’);
detratio = -0.5 * log(det(iS2)/det(is1));

iS1 = inv(iS1);

is2 inv(is2);

fprintf(1, ’ Computing distances ...\n’);
[d11, d12, d21, d22] = compute_distances(xl, x2, iS1, iS52);
fprintf(1, ’ Classifying (Parzen) ...\n’);

for r = h,

counter=counter+l;

% Compute sums:
temp = -0.5 / r"2;
s11 = sum(exp(temp * d11));
s12 = sum(exp(temp * d12));
s21 = sum(exp(temp * d21));
s22 = sum(exp(temp * d22));

1rl = detratio - log((n2 * s11) ./ (n1 * s21));
1r2 = detratio - log((n2 * s12) ./ (nl * s22));

111 = detratio - log((n2 * (s11 - 1)) ./ ((n1 - 1) * s21));
112 = detratio - log(((n2 - 1) * s12) ./ (n1 * (s22 - 1)));

[Rhit,Rfa,Lhit,Lfal = classify2(1r1l, 1r2, 111, 112);

1Rhit=length(Rhit) ;
1Rfa=length(Rfa);
rhitp(test,1:1Rhit)=Rhit;
rfap(test,1:1Rfa)=Rfa;

1Lhit=length(Lhit);
1Lfa=length(Lfa);
lhitp(test,1:1Lhit)=Lhit;
1fap(test,1:1Lfa)=Lfa;

end Y for r
fprintf(1,’ Classifying (k-NN) ...\n’);

% sort distances
di1 = sort(dil);
d12 = sort(d12);
d21 = sort(d21);
d22 = sort(d22);

1

tr = detratio + log(nl/n2);
t1ll = detratio + log((ni-1)/n2);
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t12 = detratio + log(n1/(n2-1));

for i = k,
1rl = tr + 0.5 * dim * log(d11(i,:) ./ d21(i,:));
1 1r2 = tr + 0.5 * dim * log(d12(i,:) ./ d22(4,:));

111 = t11 + 0.5 * dim * log(d1i(i+1,:) ./ d21(4i,:));
112 = t12 + 0.5 * dim * log(d12(i,:) ./ d22(i+1,:));

[Rhit ,Rfa,Lhit,Lfa] = classify2(lrl, 1r2, 111, 112);

1Rhit=length(Rhit);
1Rfa=length(Rfa);
rhitk(test,1:1Rhit)=Rhit;
rfak(test,1:1Rfa)=Rfa;

1Lhit=length(Lhit);
1Lfa=length(Lfa);
lhitk(test,1:1Lhit)=Lhit;
1fak(test,1:1Lfa)=Lfa;

end Y% for i

end Y% for test
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D.3 classify2.m

% CLASSIFY2: classify resubstitution and leave-one-out
y
% discriminant values.

% Inputs: Lri, Lr2: resubstitution discriminant values

% 111, L12: leave~one~out discriminant values
%

% Outputs: Rhit,Rfa: Resubstitution probabilities

% Lhit,Lfa: Leave~one-out probabilities

function [Rhit,Rfa,Lhit,Lfa] = classify2(Lrl, Lr2, L11, L12)

% First get the minimum resubstitution error
fprintf(1,’ Resubstitution...?);

[Rhit ,Rfa] = min_error2(Lrl, Lr2);
fprintf(1,’done.\n’);

% Find the leave-one-out error
fprintf(1,’ Leave one out...’);
[Lhit,Lfal= min_error2(L11,L.12);
fprintf(1,’done.\n’);
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D.4 min_error2.m

% MIN_ERROR2: Given two sets of discriminant values, finds the probabilities
% of hit and false alarm

%

% Inputs: SET1, SET2: sets of discriminants from classes 1 & 2

%
% Outputs: Phit: Probability of a hit

% Pfa : Probability of false alarm
%

function [Phit, Pfa] = min_error2(setl, set2)

i=find(set1~=Nal);
temp=set1(i);
setl=temp;

j=find(set2~=Nal) ;
temp2=set2(j);
set2=temp2;

clear i j temp temp2

big = realmax - realmin;
search = 0;

% Eliminate infinities from the search.
infs = find(seti==inf);

set1(infs) = big * ones(size(infs));
infs = find(setil==(-inf));

set1(infs) = -big * ones(size(infs));
infs = find(set2==inf);

set2(infs) = big * ones(size(infs));
infs = find(setl==(-inf));

set2(infs) = -big * ones(size(infs));

a = min(setl);
b = max(setl);
¢ = min(set2);
d = max(set2);

% determines how the discriminant values of the two sets overlap
if ((b<c) | (d<a))

Phit=1;

Pfa=0;

return;
end Y if

if (a<=c&c<=4d&dc<=b)

lo = ¢;
hi = d;

elseif (c<=a & a<=b&b<=4d)
lo = a;
hi = b;

elseif (a<=c & c<=Db & b <=4d)
lo = c;
hi = b;

elseif (c <= a & a<=d & d<=b)
lo = ¢c;
hi = b;

else

% What’s left??? bad decision rules.
fprintf(1,’Bad decision’);
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Phit=.5;

Pfa=.5;

return;
end % if

% go fish (in a limited pool)
pool = [set1(set1>=1lo & set1<=hi) set2(set2>=lo & set2<=hi)];

% Get one copy of each distinct value in temp
temp(1) = lo;
n = size(pool,2);
for i = 2:n,

temp(i) = min(pool(pool>temp(i-1)));

if temp(i) == hi

break

end % if
end % for
n = size(temp,2);

errl = zeros(1, n+l);
err2 = zeros(1l, n+l);

% Count the errors for each guess
for i=1:m,
err1(i) = sum(setl >= temp(i));
err2(i) = sum(set2 < temp(i));
end % for
erri(n+1) = sum(setl > temp(n));
err2(n+1) = sum(set2 <= temp(n));

% Find the probabilities
Pmiss=erril./length(setl);
Phit=1 - Pmiss;
Pfa=err2./length(set2);
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D.5 roccurve.m

% ROCCURVE : Creates the ROC curves from the hit and false alarm probabilities.
Ly
%
% Inputs: rhitp,rhitk,lhitp,lhitk : hit probability matrices
P P
% rfap,rfak,1fap,1fak : corresponding false alarm matrices

% Outputs: faave : average false alarm probabilities vector

% rhitpave,rhitkave,lhitpave,lhitkave : average hit probabilities
% rpu,rku,lpu,lku : upper bound on 95% confidence interval

% rpl,rkl,1pl,1kl : lower bound on 95% confidence interval

%

function[faave,rhitpave,rhitkave,1hitpave,1hitkave,rpu,rpl,rku,rkl,lpu,lpl,lku,1k1]=roccurve(rhitp,rfap,
rhitk,rfak,l1hitp,1fap,lhitk,1fak)

[r,c]=size(rhitp);

x=0:.01:1;
faave=x;

rhitpl=interpolate(zfap(l,:),rhitp(1,:),x);
rhitp2=interpolate(rfap(2,:),rhitp(2,:),x);
rhitp3=interpolate(rfap(3,:),rhitp(3,:),x);
rhitp4=interpolate(rfap(4,:),rhitp(4,:),x);
rhitp5=interpolate(rfap(5,:),rhitp(5,:),x);
rhitp6=interpolate(rfap(6,:),rhitp(6,:),x);
rhitp7=interpolate(rfap(7,:),rhitp(7,:),x);
rhitp8=interpolate(rfap(8,:),rhitp(8,:),x);
rhitp9=interpolate(xrfap(9,:),rhitp(9,:),x);
rhitpiO=interpolate(rfap(10,:),rhitp(10,:),x);

rhitkl=interpolate(zrfak(1,:),rhitk(1,:),x);
rhitk2=interpolate(rfak(2,:),rhitk(2,:),x);
rhitk3=interpolate(rfak(3,:),rhitk(3,:),x);
rhitk4=interpolate(rfak(4,:),rhitk(4,:),x);
rhitk5=interpolate(rfak(5,:),rhitk(5,:),x);
rhitk6=interpolate(rfak(6,:),rhitk(6,:),x);
rhitk7=interpolate(rfak(7,:) ,rhitk(7,:),x);
rhitk8=interpolate(rfak(8,:),rhitk(8,:),x);
rhitk9=interpolate(rfak(9,:),rhitk(9,:),x);
rhitk1O=interpolate(rfak(10,:),rhitk(10,:),x);

lhitpl=interpolate{(1fap(1,:),lhitp(1,:),x);
lhitp2=interpolate(1fap(2,:),lhitp(2,:),x);
lhitp3=interpolate(lfap(3,:),1hitp(3,:),x);
lhitp4=interpolate(1fap(4,:),1hitp(4,:),x);
lhitp5=interpolate(1fap(5,:),1hitp(5,:),x);
lhitp6=interpolate(1fap(6,:),1hitp(6,:),x);
lhitp7=interpolate(1fap(7,:),1hitp(7,:),x);
lhitp8=interpolate(1fap(8,:),1hitp(8,:),x);
1lhitp9=interpolate(1fap(9,:),1hitp(9,:),x);
1lhitplO=interpolate(1fap(10,:),1lhitp(10,:),x);

lhitkl=interpolate(1fak(1,:),lhitk(1,:),x);
lhitk2=interpolate(1fak(2,:),1hitk(2,:),x);
lhitk3=interpolate(1fak(3,:),1hitk(3,:),x);
lhitk4=interpolate(1fak(4,:),1hitk(4,:),x);
lhitk5=interpolate(1fak(5,:),1hitk(5,:),x);
lhitk6=interpolate(1fak(6,:),1hitk(6,:),x);
lhitk7=interpolate(1lfak(7,:),1lhitk(7,:),x);
lhitk8=interpolate(1fak(8,:),1hitk(8,:),x);
lhitk9=interpolate(1fak(9,:),1hitk(9,:),x);
lhitk10=interpolate(1fak(10,:),1hitk(10,:),x);

D-8




% averages

rhitpave=(rhitpi+rhitp2+rhitp3+rhitp4+rhitpS+rhitp6+rhitp7+rhitp8+rhitp9+rhitp10)/10;
rhitkave=(rhitki+rhitk2+rhitk3+rhitk4+rhitk5+rhitk6+rhitk7+rhitk8+rhitk9+rhitk10)/10;
lhitpave=(1lhitpl+1lhitp2+1hitp3+1hitp4+1hitp5+1hitp6+1hitp7+1hitp8+1hitp9+1lhitp10)/10;
lhitkave=(lhitk1+1hitk2+1hitk3+1hitk4+1hitk5+1hitk6+1hitk7+1hitk8+1hitk9+1hitk10)/10;

%standard deviations

rp=[rhitpl;rhitp2;rhitp3;rhitp4;rhitp5;rhitp6;rhitp7;rhitp8;rhitp9;rhitp10];
rk={rhitk1;rhitk2;rhitk3;rhitk4;rhitk5;rhitk6;rhitk7;rhitk8;rhitk9;rhitk10];
1p=[1hitp1;lhitp2;1hitp3;1hitp4;lhitp5;1hitp6;1hitp7;1hitp8;1hitp9;1hitp10];
1k=[1hitk1;1hitk2;1hitk3;1hitk4;lhitk5;1lhitk6;1hitk7;1hitk8;1hitk9;1hitk10];

srp=std(rp);
srk=std(rk);
slp=std(1p);
slk=std(1k) ;

% confidence intervals
rpu=rhitpave+2.262*(srp./sqrt(10));
rpl=rhitpave~2.262*(srp./sqrt(10));

rku=rhitkave+2.262*(srk./sqrt(10));
rkl=rhitkave~2.262*(srk./sqrt(10));

lpu=lhitpave+2.262*(slp./sqrt(10));
1pl=lhitpave~2.262%(slp./sqrt(10));

lku=lhitkave+2.262*(slk./sqrt(10));
1kl=lhitkave-2.262*(slk./sqrt (10));
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D.6 interpolate.m

% INTERPOLATE: Interpolates points on the given curves

% Inputs: fa : false alarm probabilities

% hit : corresponding hit probabilities

%

% Output: mnewhit2 : interpolated hit vector, same length as newvector
%

function[newhit2]=interpolate(fa,hit,newvector)

fa=(round (1000%fa))/1000;
s=max(fa) ;

newfa=[0];
newhit=[0];

y=find (fa==0);
if isempty(y)==0
z=find (hit(y));
if isempty(z)==
yy=(sum(hit(z)))/length(z);
nevwhit=[yyl;
end
end

for i=.001:.001:s
y=find(fa==1);
if isempty(y)==
newfa=[newfa il;
yy=(sum(hit(y)))/length(y);
nevhit=[newhit yyl;
end
end

if s™=1
newfa=[newfa 1];
nevhit=[newhit 1];
end

newhit2=interpl(newfa,nevhit ,newvector);

% gets hit value for fa=0

% creates monotonic points
% to put into interpl

% final value for fa=1

% does interpolation
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